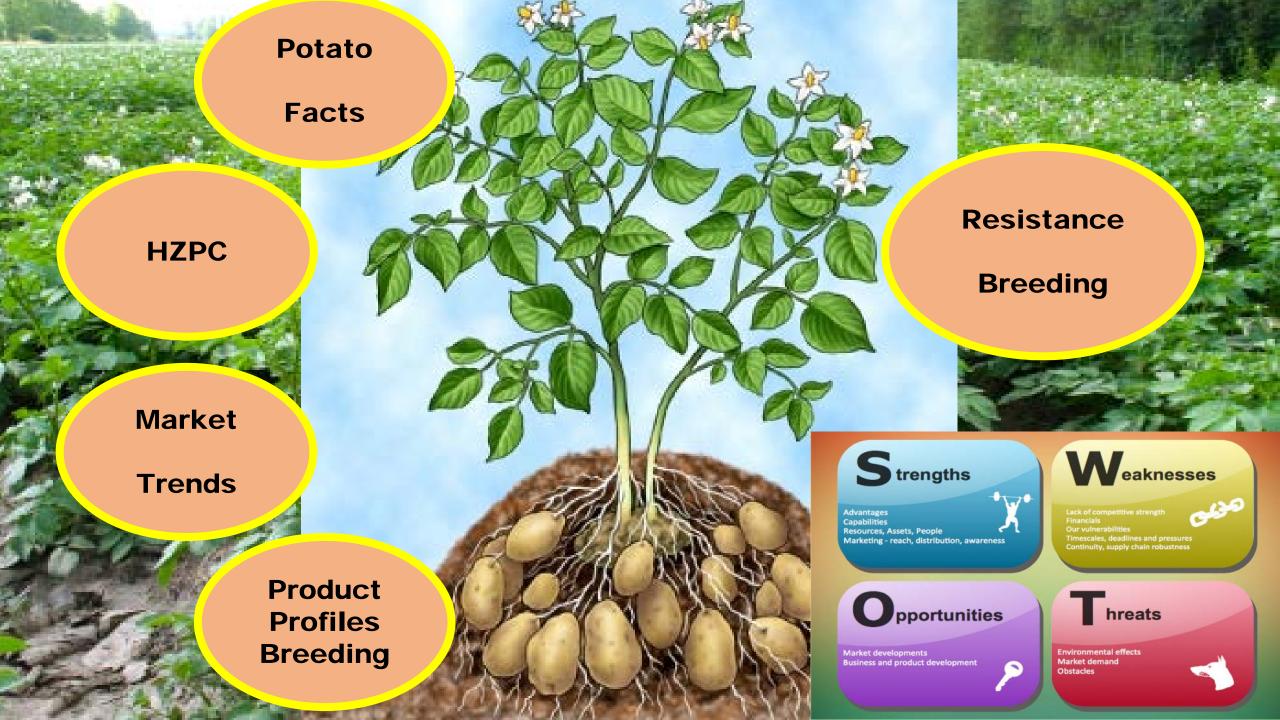
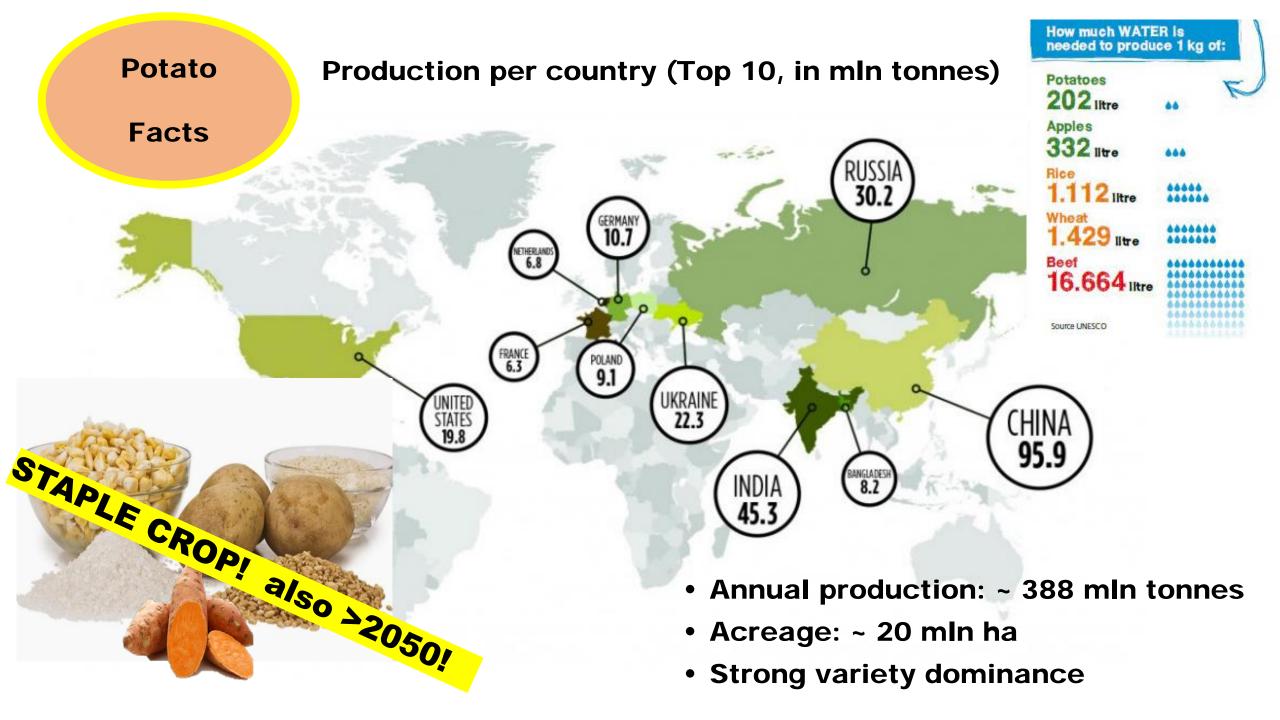
EAPR Pathology & Pests

Reducing Pesticide Use while Preserving Potato Productivity and Profitability

EAPR Pathology & Pests

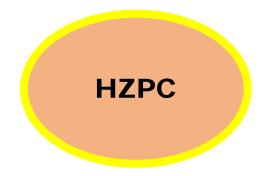
Reducing Pesticide use while Preserving Potato Productivity and Profitability


+ Quality


Resistance Breeding

Neuchatel, September 3rd 2019

Doretta Boomsma Programleader Plant Pathology & Cell Biology



Community involvement was renamed into Social impact

Environmental stewardship

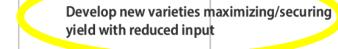
Contribution to food security

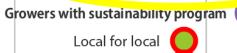
Social impact

Impact management

Value creation

Compliance


HZPC materiality matrix


Stakeholder concern

significant

moderate

Building Human Capital

More varieties to more countries

Travel efficiency

Child labour

Sustainable sourcing (packaging)

⋒

2 ZERO HUNGER

8 DECENT WORK AND ECONOMIC GROWTH

3 GOOD HEALTH AND WELL-BEING

4 QUALITY EDUCATION

10 REDUCED INEQUALITIES

5 GENDER EQUALITY

moderate

significant

major

Impact on HZPC

Stakeholder dialogue & transparency

Optimize transport

Market

Trends

Healthy seed potatoes, certification systems (now)
True seed (as well)
Distribution channels
Knowledge via apps
Convenience

...

No waste Low foot print Value to price Honest product (A)biotic tolerances
Climate extremes
Production at marginal soils
Handling in the value chain
Low input
Salinity
Easy storage

ROBUST NUTRITIOUS EASY ACCESS LOW COST

Availability
Safety
Less meat
Nutrition rich and dense
Taste is the carrier

. . .

ratoe

Product Profiles Breeding

Our Breeding Program serves all the Actors of the Value Chain

RESEARCH & DEVELOPMENT

SEED GROWER

PACKER

QSR

SUPERMARKET

LOCAL MARKET

CONSUMER

Product Profiles Breeding

- List of requirements translated into Product Profiles
- Each actor in value chain has different Product Profiles consisting of different traits
- A new variety has to be significantly better and/or has to contain new (combination of) traits
- About 50 'Must Haves' traits per variety!

													HZD 12-1634 ▲
	CRITERIA				sp N								
	MATURITY		70	50	55	60	65	70	75	80	85	90	65
O	RELATIVE YIELD		100	80	85	90	95	100	105	110	115	120	99
	YIELD	t/ha	55	30	35	40	45	50	55	60	65	70	64
mor	SHAPE		3	1	2	3	4	5	6	7	8	9	2
Agronomic	TUBERS 40+ / 10kg		95	55	65	75	85	95	105	115	125	135	
	TUBERS PER PLANT		15	10	11	12	13	14	15	16	17	18	13
	BRUISING		5	0		5		10		15		20	17
	DORMANCY PERIOD		75	20	30	40	50	60	70	80	90	99	91
	INTERNAL DEFECTS		> 85	50	55	60	65	70	75	80	85	90	87
	SPRAING		> 95	60	65	70	75	80	85	90	95	99	86
a)	VIRUS Yntn TUBER		> 90	20	30	40	50	60	70	80	90	99	99
tanc	VIRUS RESISTANCE FOLIAGE		>90	20	30	40	50	60	70	80	90	99	92
Resistance	LATE BLIGHT FOLIAGE		> 80	20	30	40	50	60	70	80	90	99	46
	LATE BLIGHT TUBER		> 80	20	30	40	50	60	70	80	90	99	88
	COMMON SCAB		> 65	50	55	60	65	70	75	80			68

Resistance
Breeding

Exploit

Use Improve

Strengths

Advantages
Capabilities
Resources, Assets, People
Marketing - reach, distribution, awareness

Veaknesses

Lack of competitive strength
Financials
Our vulnerabilities
Timescales, deadlines and pressures
Continuity, supply chain robustness

Internal

Opportunities

Market developments
Business and product development

hreats

Environmental effects Market demand Obstacles **External**

Mitigate

Resistance

Breeding

Genotyping (MAB)

Cooperation Academic-Companies

Phenotyping

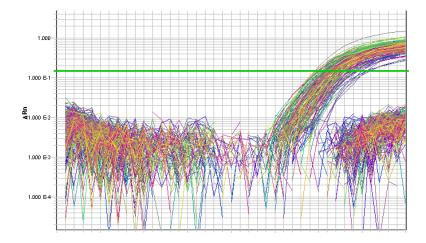
Diploid Breeding

Stacking R- genes

Big Data Analysis

Resistant varieties

Explore and exploit wild species for R genes



Genotyping (MAB)

Benefits of molecular markers

- Which crosses give the highest probability
 to result in progeny combining many traits from the product profile.
- 2. Allows us to select within 5 week after sowing for several traits.

Years after sowing of marker result

													•
SPRAING		> 95	60	65	70	75	80	85	90	95	99		0
VIRUS Yntn TUBER		> 90	20	30	40	50	60	70	80	90	99		0
VINOS THAT FOREIT													
VIRUS RESISTANCE FOLIAGE		>90	20	30	40	50	60	70	80	90	99		0
VINOS NESISTANCE I GELAGE													
LATE BLIGHT FOLIAGE		> 80	20	30	40	50	60	70	80	90	99		0
LATE BLIGHT FOLIAGE													
LATE BLIGHT TUBER		. 00	20	30	40	50	60	70	80	90	99		0
LATE BLIGHT TOBER		> 80											
COMMON CCAR			50	55	60	65	70	75	80				4
COMMON SCAB		> 65											4
			50	55	60	65	70	75	80				_
POWDERY SCAB		> 65											6
			1	2	3	4	5	6	7	8	9	П	_
Ro 1,4		> 8											0
												-	

At this moment mainly markers for dominant monogenic resistances:

PCN, PVY, LB, MCH, WD

Diploid Breeding 160 wild diploid species

Quality and resistance traits used in diploid gene plants into 4x potato via 2n gametes

Haploid Tuberosum /Andigena

(2n=2x=24)

*Female fertility/adaptation

**Ps/ps* (or) *ps/ps*

Cultivated/wild species

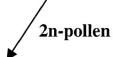
(2n=2x=24)

*New genes/alleles

*ps/ps

X

Agronomic superior cultivar

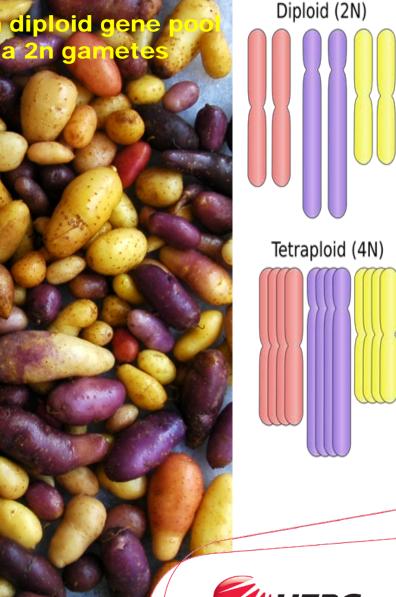

(2n=4x=48)

*Unrelated to haploid

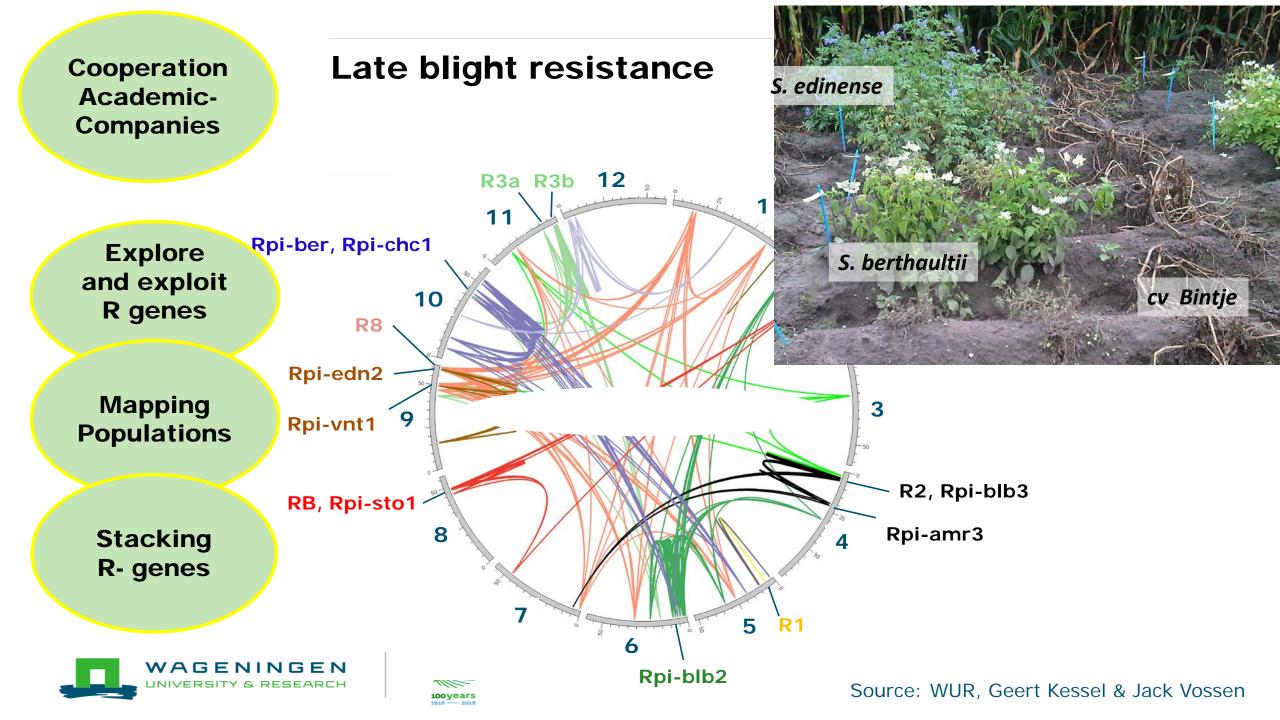
Haploid-species hybrid

(2n=2x=24)

*ps/ps

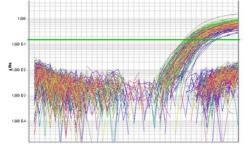

Diplandrous tetraploid hybrid

X


(2n=4x=48)

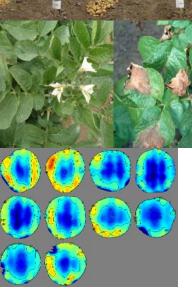
*Heterosis/allelic diversity

*Desirable combination of traits



Growing with our potatoes

The Fields for potato breeding



Resistant varieties

Late Blight

Based on one R gene (R8, Blb2, venturi en berthaulti)

PVY (foliage)

e.g. Sagitta, Delia Red en Camelia

PCN (Gro-ABC & Gpa-DE)

e.g. Allison, Alcander, Primabella

WART (fysio 1, 2, 6, 18)

e.g. Althea, Cardyma

In about 5 years time:

New candidate varieties with <u>combination</u> of PCN, PVY, Wart (1) and Late blight resistance

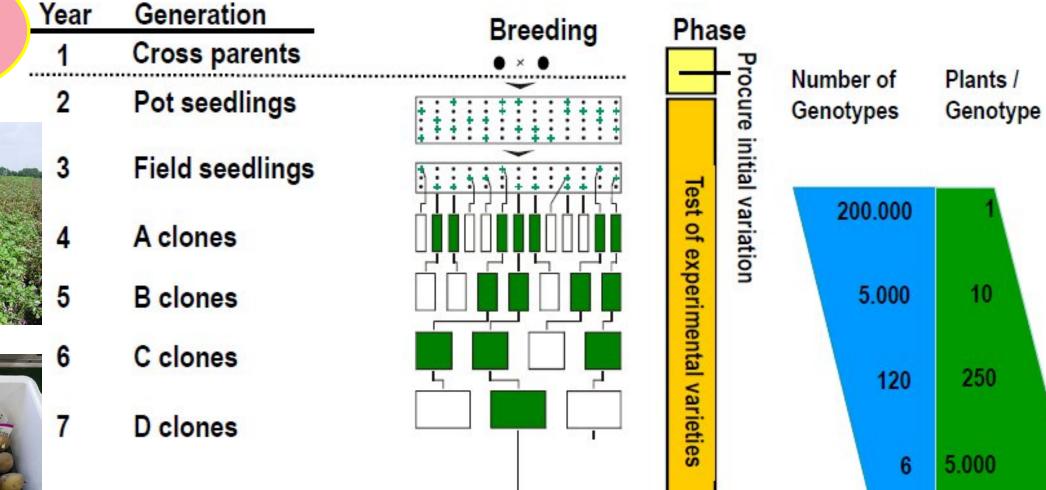
LB Res.Variety	Company					
Alouette	Bio Select/Agrico					
Levante	Bio Select/Agrico					
Carolus	Bio Select/Agrico					
Twinner	Bio Select/Agrico					
Twister	Bio Select/Agrico					
Acoustic	C. Meijer b.v.					
Cammeo	Caithness Potatoes B.V.					
Passion	Caithness Potatoes B.V.					
Tentation	Caithness Potatoes B.V.					
Sarpo Mira	Danespo					
Connect	Den Hartigh					
Otolia	Europlant					
Alanis	Interseed Holland B.V.					
Bionica	N. Vos					
Sevilla	N. Vos					
Cephora	Plantera B.V.					
Vitabella	Plantera B.V.					

Resistance

Breeding

Phenotyping & Genotyping quantitative/ polygenic traits

Combining all traits of interest



Time
consuming
(phenotyping,
seed
multiplication
rate)

Yield, Quality, Resistances

Time consuming

- - 10-12 Positioning

Official testing

8-9

13 Commercial

Combining all traits of interest nigh impact traits are more difficult to phenotype

"Numbers Game"

Start selection (500 individuals)

- After 3 years of selection 2% is left
- Probability is very small that they all have these traits

VIRUS Yntn TUBER	> 90	20	30	40	50	60	70	80	90	99	5
VIRUS RESISTANCE FOLIAGE	>90	20	30	40	50	60	70	80	90	99	7
LATE BLIGHT FOLIAGE	> 80	20	30	40	50	60	70	80	90	99	5
LATE BLIGHT TUBER	> 80	20	30	40	50	60	70	80	90	99	4
COMMON SCAB	> 65	50	55	60	65	70	75	80			4
		50	55	60	65	70	75	80			
POWDERY SCAB	> 65	1	2	3	4				8	9	6
Ro 1,4	> 8	1		3	4	5	0	/	8	9	5

Conclusion: New variety will be a compromise

Resistance

Breeding

Hybrid potato - TPS

Unravel genetics plantpathogen interaction

Market trends - sustainable agriculture

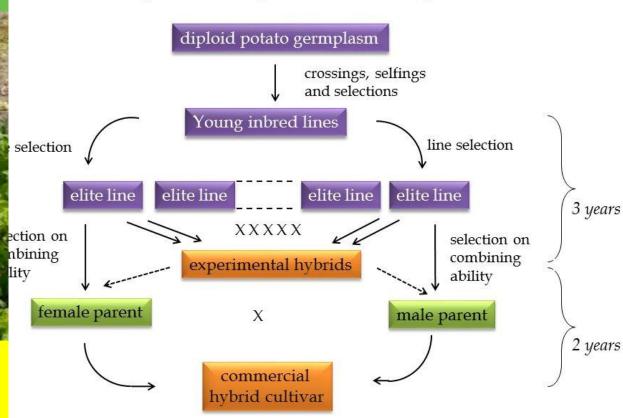
New Technologies (Cis-genesis, GMO, Geneediting)

Genomic selection

Control & time gain!

Fix traits of interest in homozygous lines
Stack & combine specific traits in hybrids

Clonal 2n= 4x



[•]Potential: 120 tons/ha

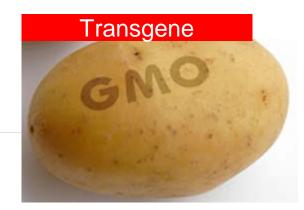
Achievement: >100

tons/ha, 90% marketable

Diploid F₁ hybrid breeding

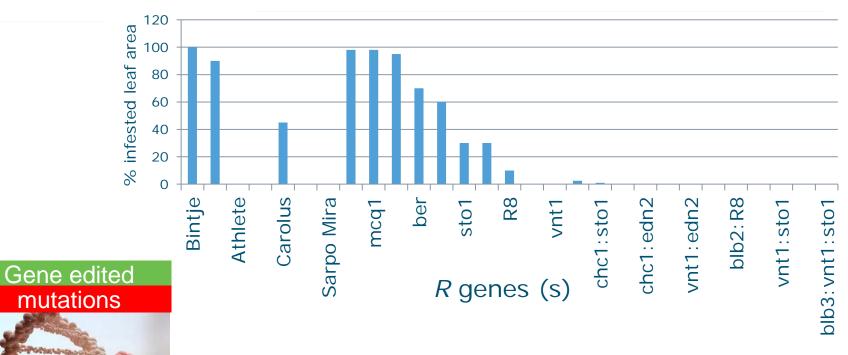
TPS 2n= 2x & 4x

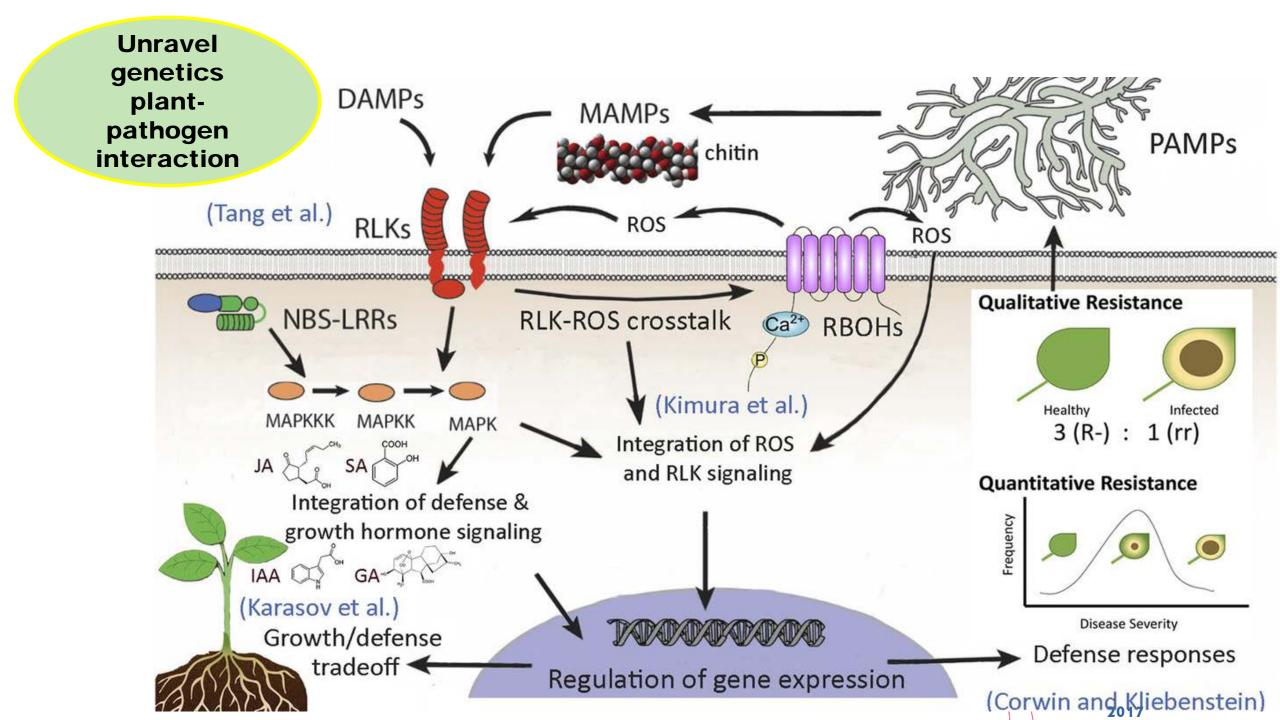
Potential: unknown Achievement: improving on marketable yield!



New Technologies

1-*R*-gene transgenic Desiree differential set in the field





Block S genes

Disease progress 48 d after start LB epidemic (2016)

Resistance

Breeding

Regulation
Gene editing
& GMO

Resistance breakdown (e.g. Pi)

Climate change

Adaptation of pathogens

Increased global trade

Market demands

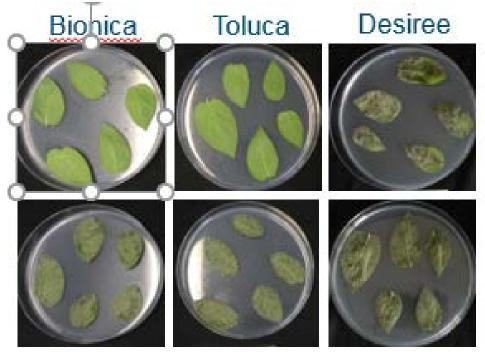
- Market demands can change fast - traditional breeding is slow
- Market penetration of novel varieties is very slow
- Competition of free varieties
- Yield&Quality vs Resistances

Potato varieties in NL

	Registration (year)#	Seed prod 2016 NL (% of total)##
Bintje	1910	2
Desiree	1962	2
Spunta	1968	15
Agria	1985	4
Innovator	1998	4
Fontane	1999	8
Sarpo Mira	<2003	0,009
Toluca	2006	0
Carolus	2012	0,09
Avito	2013	0,03
Alouette	2014	0,02

#Source: http://10.73.177.202/potatopedigree/

##Source: https://www.nak.nl/

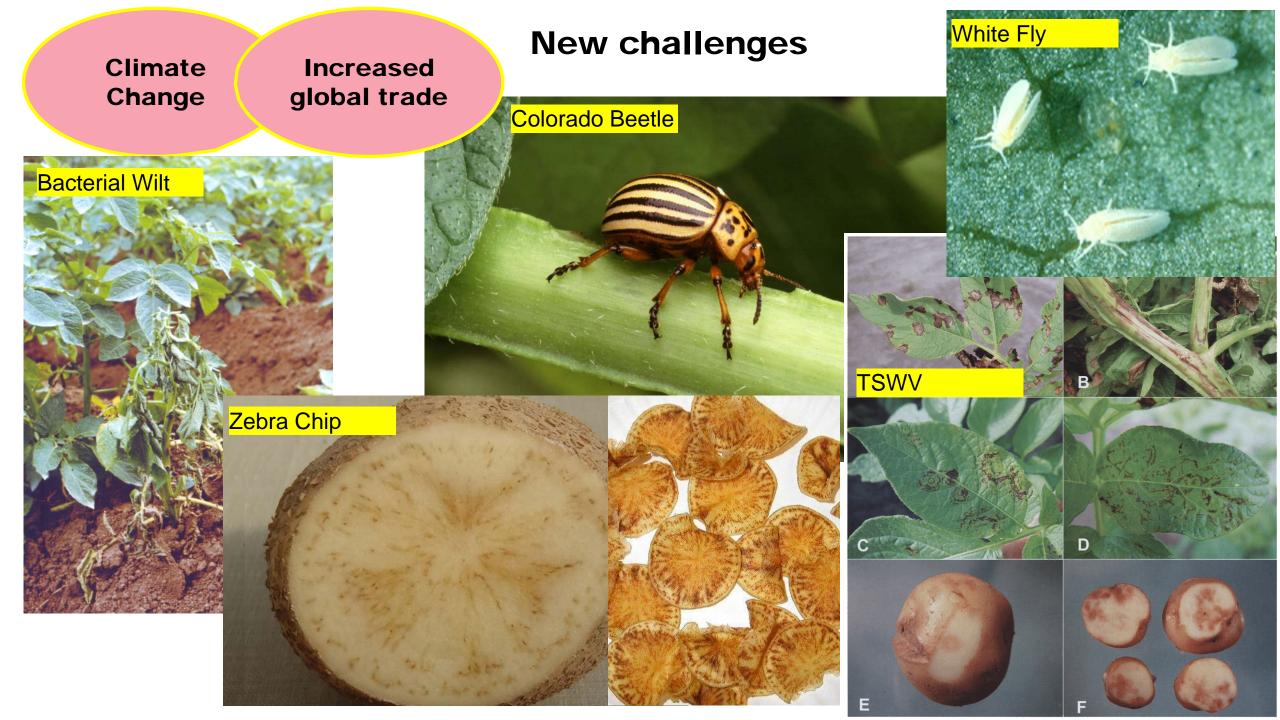

Adaptation of pathogens

Resistance breakdown (e.g. Pi)

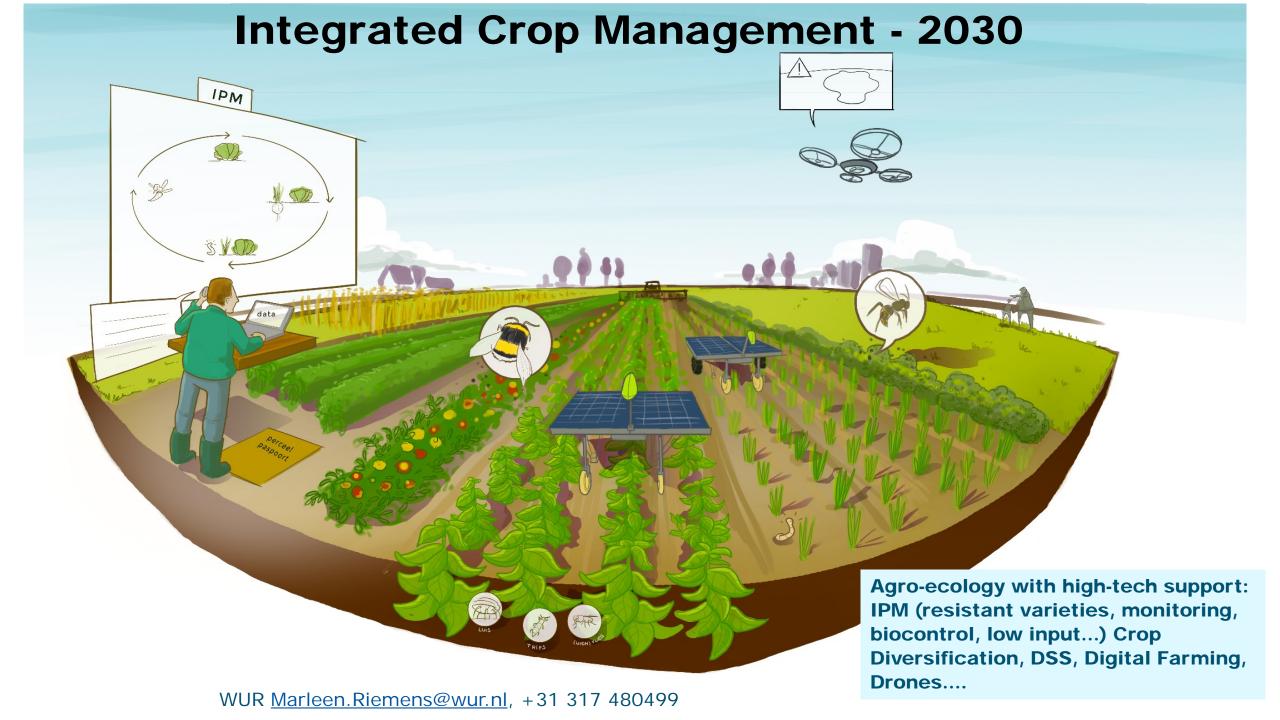
Rpi-blb2 breaking in 2008

>100 isolates (a-virulent)

3 isolates (virulent)



Stacking vs non-stacking


Host diversity	Pathogen population diversity	Potato destroyed in landscape
100% R0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0
50% R0 + 50% R1	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
50% R0 + 50% R12	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 PB to 0.8 PB to 0.8 PB to 0.8 PB to 0.6 PB
50% R0 + 50% R123	1.0 0.8 0.8 0.9 0.0 1 2 3 4 5 6 7 8 9 10 Vear	1.0 Plan 0.8

