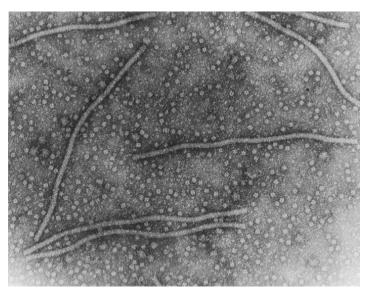


Potato virus Y (PVY) (Potyviride)

can cause stand loss, reduced yields, undersized tubers reduced quality


HAS BECOME
an increasingly serious
constraint to seed
potato production in
the world

HOW?

- 1 chemotherapy?
- 2 essential oils?
- 3 electrotherapy?

EFFORTS to ameliorate
PVY effects

= **essential** for potato production

Potato virus X
(PVX)
(Potexvirus)

Occurs throughout commercial stocks of most varieties

Is responsible for many of the uncertainties and difficulties encountered in field inspections.

When Potato virus Y is present, synergy between these two viruses causes severe symptoms in potatoes

Elimination PVX from potato

_

supply

important for potato production HOW? chemotherapy? essential oils? electrotherapy?

1. WHY CHEMOTHERAPY?

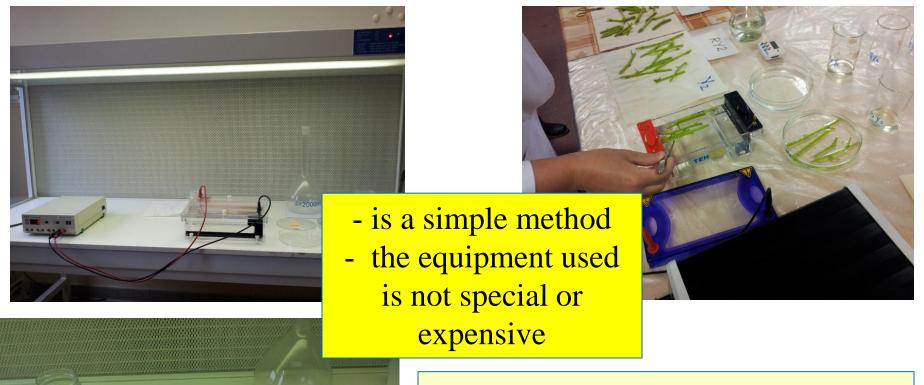
RIBAVIRIN (RBV)

(1,\beta-D-Ribofuranosyl-1,2,4-triazole-3-carboxamide)

- Broad spectrum **anti-viral activities**,
- RBV5'-phosphate = inhibitor of inosine monophosphate (IMP) dehydrogenase [1]

Bibliography

[1] Cassel, A. C. 1987. In vitro induction of virus-free potatoes by chemotherapy. In: Biotrechnology in Agriculture and Forestry, Vol. 3Potato (ed.) Y.P.S. Bajaj, pp. 40-50, Springer-Verlag, Berlin, Germany [2] Ward, P., Small, I., Smith, J., Suter, P., Dutkowski, R. 2005. Oseltamivir (Tamiflu) and its potential for use in the event of an influenza pandemic *The Journal of antimicrobial chemotherapy* 55 (Suppl 1): 5–21

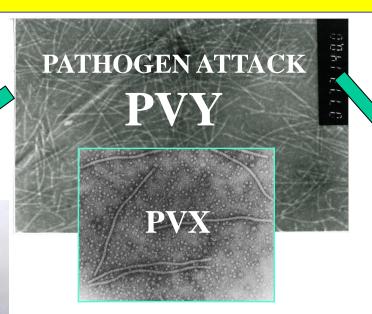

OSELTAMIVIR (**OSMV**) (**Tamiflu**)

[ethyl (3R,4R,5S)-5-amino-4-acetamido-3-(pentan-3-yloxy)-cyclohex-1-ene-1carboxylate]

- an antiviral prodrug
- used to slow the spread of flu virus (influenza A and B) by stopping from chemically cutting with its host cell.
- produced from shikimic acid, an inhibitor of neuraminidase [2]

2. WHY electrotherapy?

- electric pulses = stimulants on plants differentiation *in vitro*
- electric current is applied to plant tissues for disrupt/degrade viral nucleoprotein and eliminate its virulence activity


3. WHY hidro-distilled **ESSENTIAL OILS (EOs)** from *Satureja hortensis?*

These EOs = a
potential source of
antimicrobial active
compounds?

3. WHY treatments with HYDROGEN PEROXIDE and ASCORBIC ACID?

ANTIOXIDANTS

plant cells have
DEFENSIVE
RESPONSES

METABOLISM CHANGES

INCREASE
REACTIVE OXYGEN SPECIES (ROS)

STRESS

Bibliography Hammerschmidt, R., 2005. Antioxidants and the regulation of defense. *Physiological and Molecular Plant Pathology*, 66: 211–212

HYDROGEN PEROXIDE

Is believed to play two distinct roles
-involves the oxidative burst in the
hypersensitive response, which
restricts pathogen growth,
-activates plant defense
responses, including

induction of phytoalexins

H₂O₂ produced in

- excess is harmful,
- LOWER concentrations=BENEFICIAL

Bibliography

López-Delgado, H., H.A. Zavaleta-Mancera, M.E. Mora-Herrera, M. Vázquez-Rivera, F.X. Flores-Gutiérrez, and I.M. Scott, 2005. Hydrogen peroxide increases potato tuber and stem starch content, stem diameter and stem lignin content. *American Journal of Potato Research*, 82: 279–285.

Quan, L.J., Zhang, B., W.W. Shi, and Li, H.Y., 2008. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. *Journal of Integrative Plant Biology*, 50: 2–18.

ASCORBIC ACID (AA)

- -Participates in response to **both biotic and abiotic stresses**
- -Acts as an **antioxidant**, **protecting** the cell against **oxidative stress** caused by environmental factors and **pathogens**.
- -Changes in AA content can modulate systemic acquired resistance, acting as a signal transducing molecule

AA as a direct scavenger of ROS is the **major redox buffer** AA is a cofactor of ascorbate peroxidase, which converts violaxanthin de-epoxidase

Bibliography

Hammerschmidt, R., 2005. Antioxidants and the regulation of defense. *Physiological and Molecular Plant Pathology*, 66: 211–212

DECREASE the PVY and PVX infection level using:

> antiviral compounds (ribavirin +oseltamivir) in tissue culture

 \triangleright several treatments (Satureja hortensis EOs, H_2O_2 and vitamine C) applied to microplants acclimatisated in green house

electrotherapy

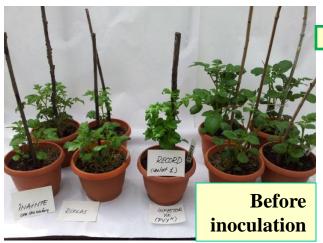
Essential oils

EXTRACTION of *EOs by* water vapours distillation \geq

The main volatils compounds

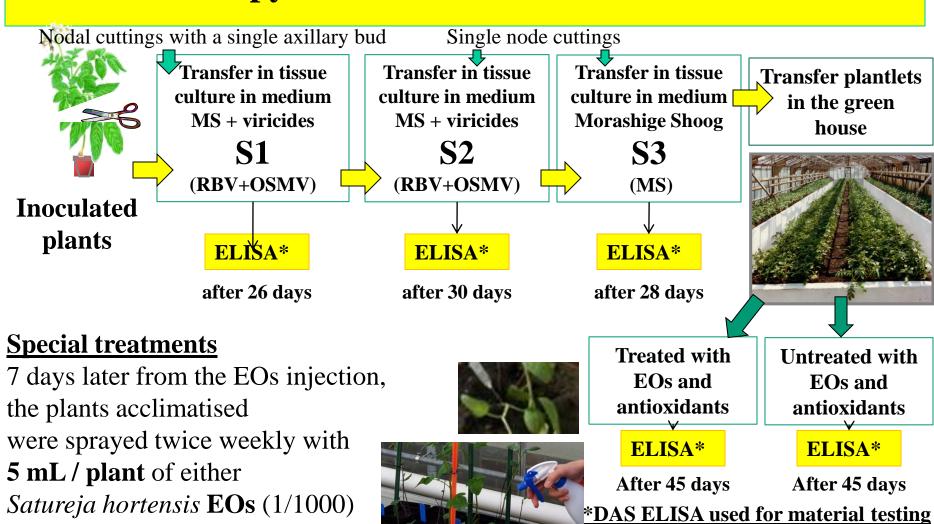
EOs from Satureja hortensis

Name	RT	Area%
Pinene α	4.68	11.27
Phellandrene α	4.80	0.46
Camphene	5.98	4.56
Pinene β	7.85	9.23
Myrcene β	11.85	1.09
CINEOL	14.00	47.01
Terpinene γ	15.45	0.62
Cymene P	16.49	2.31
Camphor	24.11	10.66
Linalool β	25.25	0.89
Bornyl Ac.	25.83	0.76
Cariophyllene α	26.21	4.67
Terpineol α	26.46	1.02
Cariophyllene β	27.90	0.48
Borneol	28.78	4.48
Cadinene	29.99	0.49



Biologic material -PVY inoculated plants (using a secondary infected source - cv. Record)

-PVX inoculated plants (using a secondary infected source - cv. Bintje)



Plants PVY positif

1. Chemotherapy + treatments with EOs and antioxidants

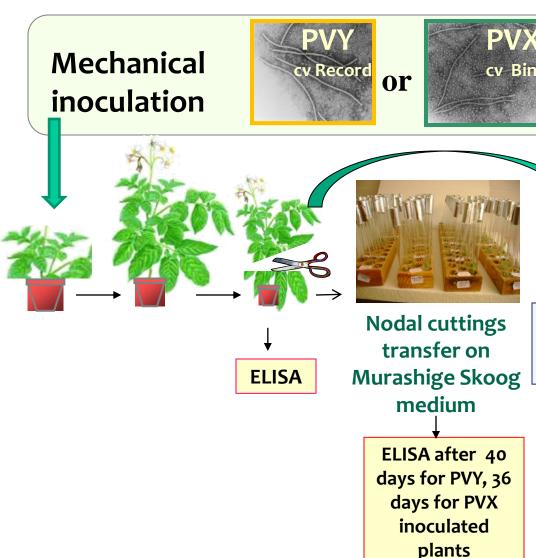
protocole Clark and Adams (1977)

1 mM H_2O_2 or 3 mM AA (pH 5.6)

1. Chemotherapy – medium's variants for the steps S1 and S2

V1 Murashige and Skoog medium (MS)
+Ribavirine (20mg/L) + Oseltamivir (40mg/L)

Medium
variants → V2 Murashige and Skoog medium (MS)
+Ribavirine (40mg/L) + Oseltamivir (40mg/L)


S1 and S2

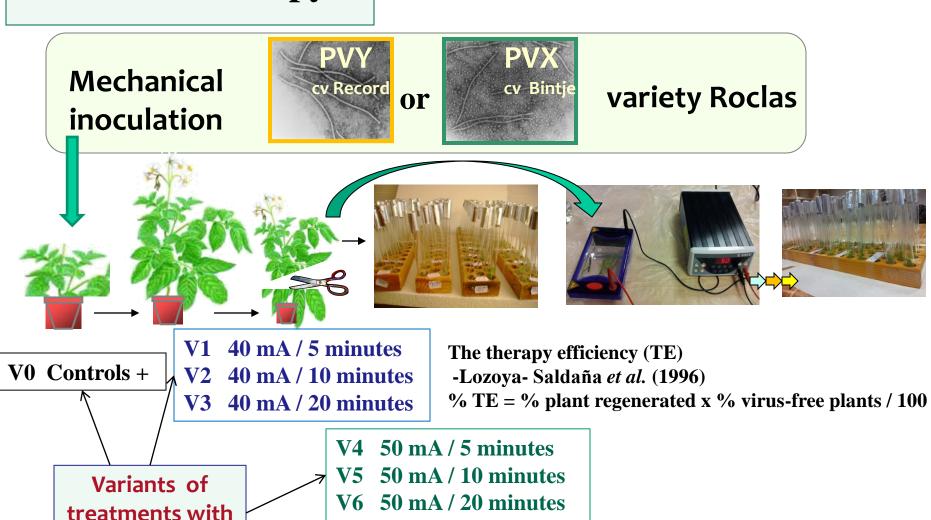
V3 Murashige and Skoog medium (MS)
+Ribavirine (20mg/L) + Oseltamivir (80mg/L)

Single node cuttings were propagated in test tubes on Murashige and Skoog medium, at 20±1°C under a 16 h photoperiod (fluorescent lights, 400–700 nm)

2. Electrotherapy

variety Roclas

Electrotherapy variants V₁-V₉


Single node transfer on MS after desinfection+wash

> ELISA after 42 days for PVY, 38 days for PVX inoculated plants

2. Electrotherapy

electric current

MATERIAL AND METHODS

V7 100 mA / 5 minutes
 V8 100 mA / 10 minutes
 V9 100 mA / 20 minutes

Sample prelevation Cutting the stem segments **Electrotherapy variants** Desinfection Wash three times Tissue culture Alcool 96° Hipoclorite solution MS medium

30 seconds

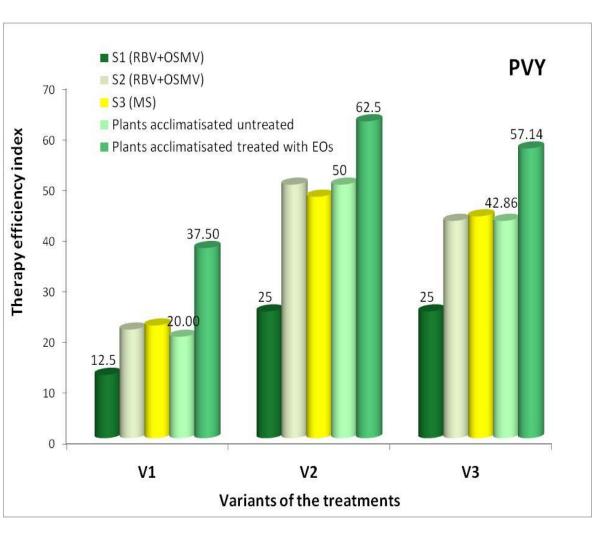
0.1%, 1 minute

1. Chemotherapy + treatments with EOs +AO

A. Effects of the treatments for PVY elimination

Plants acclimatised untreated

Plants acclimatisated and untreated with *EOs*+AO suffered significantly harmful effects


Plants acclimatised treated with EOs +antioxidants

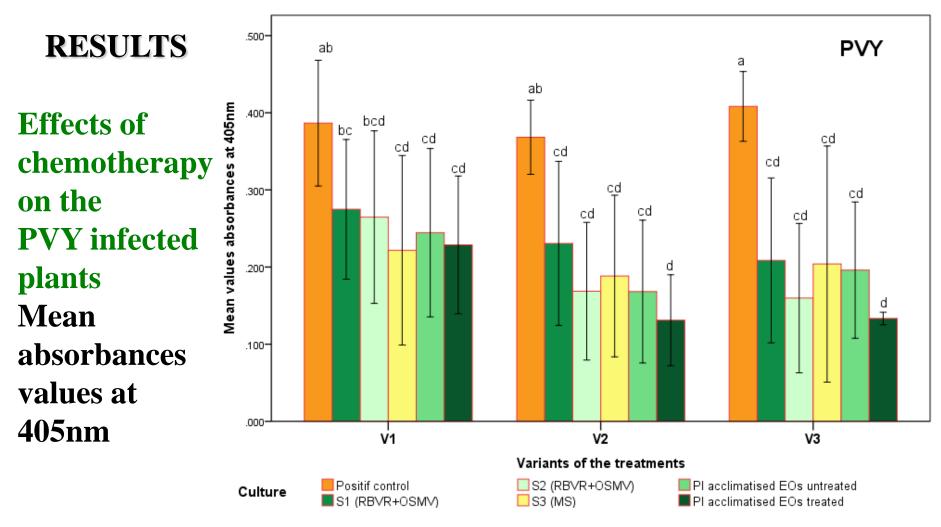
Treated acclimatisated plants treated with EOs+AO

The effects were <u>reduced</u> by the <u>treatments</u>

Chemotherapy applied on material infected with potato virus Y (PVY) - THERAPY EFFICIENCY INDEX

Variant of		Regenera tion rate		Virus elimination	
tre	eatment	NPT/	%	NPFV %	
	1	NPM		NPM	
V	S 1	7/8	87.5	1/7	14.3
1	S2	11/14	78.6	3/11	27.3
1	S3	13/18	72.2	4/13	30.7
	PAUT	6/5	60	2/6	33.3
	PAT				
	EOs+AO	7/8	87.5	3/7	42.9
\mathbf{V}	S1	5/8	62.5	2/5	40.0
2	S2	10/14	71.4	7/10	70.0
4	S3 (MS)	16/21	76.2	10/16	62.5
	PAUT	6/8	75	4/6	66.7
	PAT				
	EOs+AO	6/8	75.0	5/6	83.3
\mathbf{V}	S1	3/8	37.5	2/3	66.7
3	S2	7/14	50.0	6/7	85.7
	S3 (MS)	9/16	56.2	7/9	77.8
	PAUT	5/7	71.4	3/5	60.0
	PAT				
	EOs+AO	4/7	57.1	4/4	100.0

V1=MS + RBV(20mg/L) + OSMV(40mg/L)


V2 = MS + RBV(40mg/L) + OSMV(40mg/L)

V3 = MS + RBV(20mg/L) + OSMV(80mg/L)

MS = Murashige and Skoog

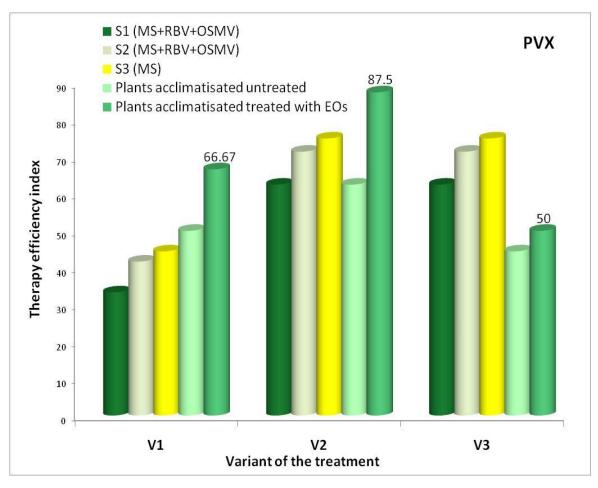
RBV=Ribavirine; OSMV+ Oseltamivir NTP = number of tested plants (plants that survived) NMP = number multiplied plants NPFV = number of plants free of virus

PAUT= plants acclimatised untreated

Plants acclimatised untreated with EOs+AO

V1 = medium MS + RBV(20mg/L) + OSMV(40mg/L)

V2 = medium MS + RBV(40mg/L) + OSMV(40mg/L)


V3 = medium MS + RBV(20mg/L) + OSMV(80mg/L)

MS = Murashige and Skoog

RBV=Ribavirine

OSMV+ Oseltamivir

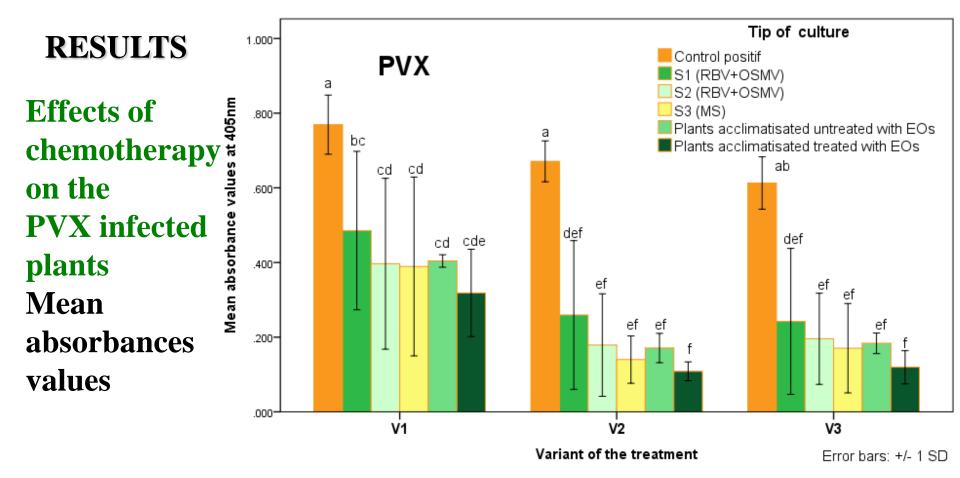
Chemotherapy applied on material infected with potato virus X (PVX) - THERAPY EFFICIENCY INDEX

Variant of the		Regenera tion rate		Virus elimination	
				rate	
tr	eatment	NPT/ NPM	%	NPFV NPM	%
\mathbf{V}	S1	5/6	83.3	1/5	40
1	S2	10/12	83.3	5/10	50
♣	S3	16/18	88.9	8/16	50.0
	PAUT	6/6	100	3/6	50
	PAT	5/6	83.3	3/5	60
	EOs+AO				
\mathbf{V}	S1	7/8	87.5	5/7	71.4
	S2	12/14	85.7	10/12	83.3
2	S3 (MS)	22/24	91.7	18/22	81.8
	PAUT	7/8	87.5	5/7	71.4
	PAT	7/8	87.5	7/7	100
	EOs+AO				
V 3	S1	5/8	62.5	4/5	80
	S2	7/10	70.0	6/7	87.5
	S3 (MS)	10/16	62.5	9/10	90
	PAUT	4/6	66.7	3/4	66.67
	PAT EOs+AO	3/6	50.0	3/3	100

V1 = MS + RBV(20mg/L) + OSMV(40mg/L)

V2 = MS + RBV(40mg/L) + OSMV(40mg/L)

V3 = MS + RBV(20mg/L) + OSMV(80mg/L)


MS = Murashige and Skoog

RBV=Ribavirine; OSMV= Oseltamivir


NTP = number of tested plants (plants that survived) NMP = number multiplied plants

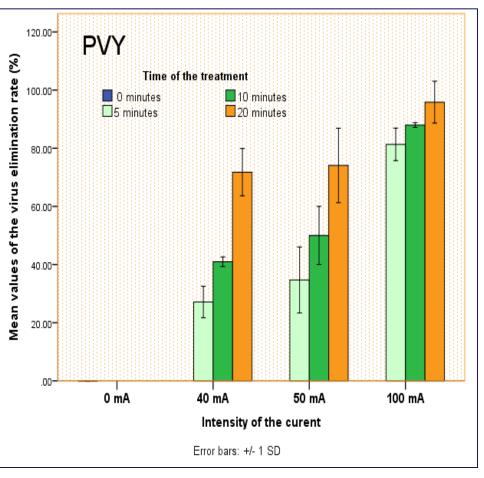
NPFV = number of plants virus free

PAUT= plants acclimatised untreated

Plants acclimatised untreated with EOs+AO

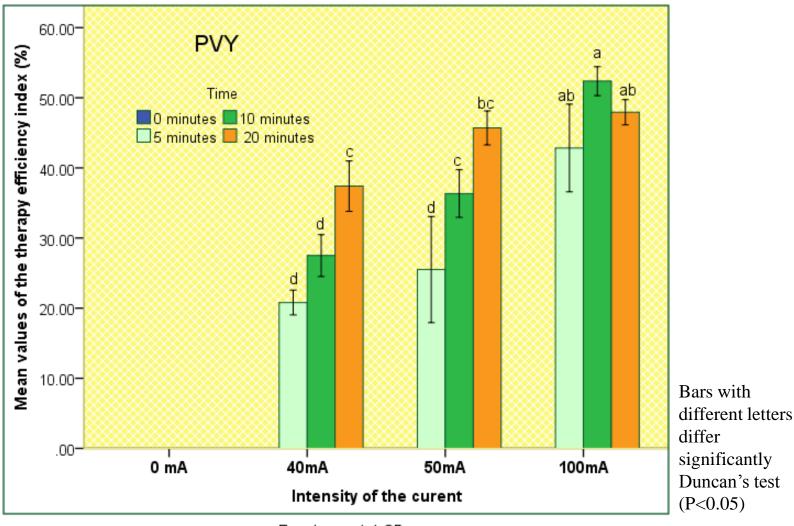
V1= MS +RBV(20mg/L) +
OSMV(40mg/L)
V2 = MS +RBV(40mg/L) +
OSMV(40mg/L)
V3= MS +RBV(20mg/L) +
OSMV(80mg/L)
MS =Murashige and Skoog
RBV=Ribavirin
OSMV= Oseltamivir

2. Electrotherapy

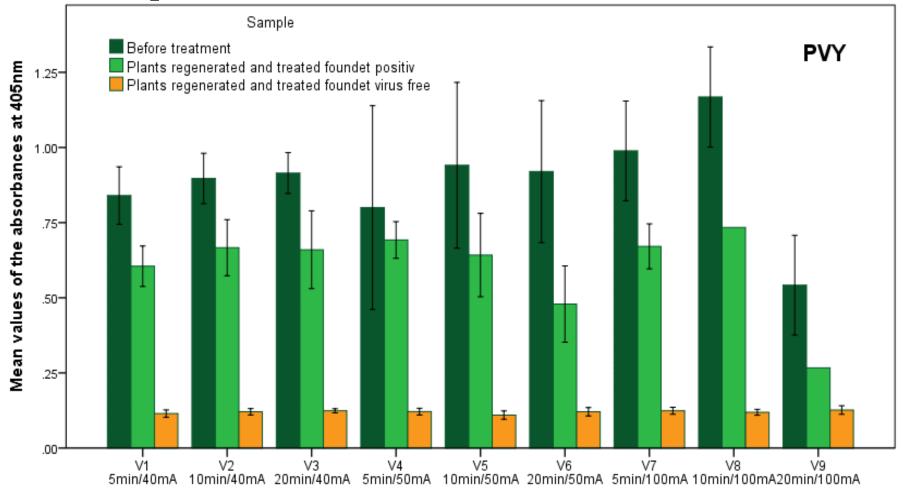

A. Effects of electrotherapy treatments of PVY infected plantlets cv Roclas

Regeneration rate

	1	·		
		eration rate		
Varia	Treatment	Regenerat	%	
nt	mA/min	ed a/		
		treated ^b		±STDEV
V0	0/0	5/24	20.8	±4.194
V1	40/5	37/48	77.1	±13.38
V2	40/10	27/40	67.5	±15.12
V3	40/20	25/48	52.1	±13.19
V4	50/5	26/35	74.3	±9.311
V5	50/10	30/41	73.2	±12.43
V6	50/20	30/48	62.5	±2.887
V7	100/5	21/40	52.5	±1.925
V8	100/10	25/42	59.5	±13.57
V9	100/20	24/48	50.0	±12.72


^a number of regenerated plantlets;

Virus elimination rate


^b number of explants treated

Effects of the ELECTROTHERAPY at microplants infected with potato virus Y (PVY) -THERAPY EFFICIENCY

Error bars: +/- 1 SD

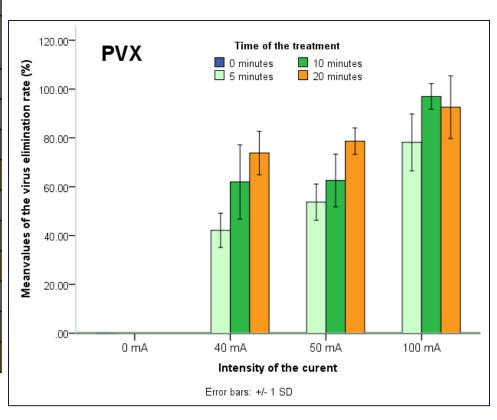
Effects of the ELECTROTHERAPY at microplants infected with potato virus Y (PVY) -Mean absorbances values

Variants of electrotherapy treatment

The treatments lead up to an decreasement of OD to PVY infected plants

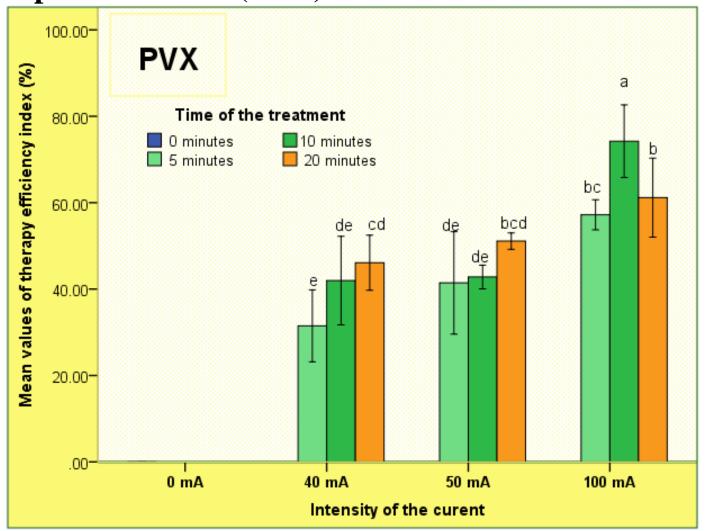
Error bars: +/- 1 SD

2. Electrotherapy


B. Effects of electrotherapy treatments of PVX infected plantlets (cv Roclas)

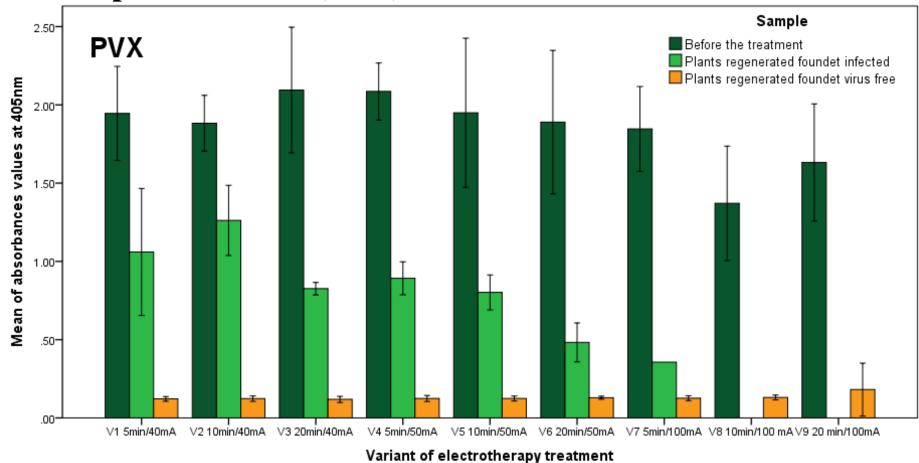
Regeneration rate

Variant	Treatme	Regeneration rate			
	nt mA/min	Regenerated ^a / treated ^b	%	± STDV	
V0	0/0	4/21	19.0	± 8.3	
V1	40/5	23/41	56.1	± 11.7	
V2	40/10	26/38	68.4	± 17.1	
V3	40/20	30/48	62.5	± 5.5	
V4	50/5	30/40	75.0	± 12.7	
V5	50/10	24/35	68.6	± 12.3	
V6	50/20	33/51	64.7	± 7.1	
V7	100/5	31/42	73.8	± 6.7	
V8	100/10	27/35	77.1	± 13.0	
V9	100/20	26/39	66.7	± 7.0	


^a number of regenerated plantlets;

Virus Elimination rate

b number of explants treated


Effects of the ELECTROTHERAPY at plants infected with potato virus X (PVX) -THERAPY EFFICIENCY

Error bars: +/- 1 SD

Bars with different letters differ significantly Duncan's test (P<0.05)

Effects of the ELECTROTHERAPY at plants infected with potato virus X (PVX) -Mean absorbances values

Error bars: +/- 1 SD The treatments lead up to an decresement of OD to PVX infected plants compared to their control Results are the mean of 3 experiments.

CONCLUSIONS

- Combined **chemotherapy** (V2: **RBV** 40mg/l + **OSMV** 40mg/l) + treatments (*EOs*+AO) of acclimatisated plants (cv Roclas), have led to:
 - > 83.7% PVY free plants and 100% PVX free plants
 - > the higher values of the therapy efficiency index (TEI):
 - 62.5 for PVY infected plants and 87.5 for PVX
- V 3 (RBV 20mg/l +OSMV 80mg/l) + treatments EOs +AO have led to the highest values for viruses elimination rate (100%), but decrease the regeneration rate (57% for PVY and 50% for PVX) \longrightarrow TEI had lower values than in variant V2.
- -EOs **TREATMENTS** and hydrogen peroxide / ascorbic acid of acclimatised plants increase the TEI in all the variants .

Satureja hortensis oils $+ H_2O_2$ (1mM) or AA (3mM)

BENEFICIAL EFFECTS on the plants obtained by chemotherapy from PVY and PVX infected POTATO sources

CONCLUSIONS

ELECTROTHERAPY

- The greatest value for therapy efficiency index (TEI) was obtained when the explants were exposed to 100mA for 10 minutes:
 - **52.4** (53.3; 50; 53.8) for PVY
 - **74.3** (71.4; 66.7; 86.3) for PVX
- -The most severe exposure at 100mA for 20 minutes resulted in 47.9% TEI for PVY and 61.5% TEI for PVX
- High values of regeneration rate but few virus free microplants for the lowest values of current intensity (40mA, 5 minutes) (77.1% and 27% for PVY; 73.3% and 43.3% for PVX)
- Electrotherapy have led to an decreasement of OD to all PVY and PVX regenerated plants obtained from infected sources

CONCLUSIONS

But.....

Some elements remain to be tested and/or improved

- the treatments success is cultivar dependent!
- the phytotoxicity of the treatments?
- there are many other EOs that could be used!
- to define the efficiency of the treatments with bulked samples!
- to combine chemotherapy + electrotherapy + treatments with *EOs* and AO!

« Il ne faut jamais renoncer à la récolte des plantes aromathiques.... Pour ceci, penchez-vous jusqu'à la terre et érigez-vous jusqu'aux ciels! »

Maurice Messeque