Potato virus Y: a new problem in potato Alexander V. Karasev *University of Idaho* ## Main crops in Idaho - Potato #1 in the U.S. - Barley -#1 - Wheat #5 - Sugar beet #2 - Common beans - Cool season legumes - Wine and table grapes ## Potato virus Y - background Potato virus Y (PVY) Kerlan (2006) - Potyviridae (Potyvirus) - Particles: flexuous filaments - Wide natural host range (Solanaceae) - Transmission: mechanical, through seed, by aphids - Aphid transmission: nonpersistent (very quick) - Exists as a complex of strains ## PVY affects potato yield Ririe, ID - 1% of infection=0.17 t/ha loss - 1% of infection= \$17 per 1 ha - 2008: 1% = \$6.3M for U.S. # Potato tuber necrotic ringspot disease (PTNRD) Affects cultivars susceptible to PTNRD, like Yukon Gold, Alturas, Waneta ## An international problem Ditta – Gilat Research Center Jelly – Southern Israel ### PVY strain classifications - Genetic based on HR induction in standard potato cultivars - Five genotypes: PVY^O, PVY^C, PVY^N, PVY^Z, and PVY^E - Molecular based on sequence homology and recombinant structure - Multiple recombinants: PVY^{Wi}, PVY^{N:O}, PVY^{NTN}, PVY-NE11, etc. ### Genetic classification Singh *et al.* (2008) Arch. Virol. 153, 1-13. ### Relative incidence of PVY strains - PVY^C almost disappeared from potato - PVY^N very rare in Europe and North America - PVY^O rare in Europe, common in North America - PVY^z and PVY^E originally found in Europe ### PVY recombinants ## PVYO symptoms (PB-Oz) Desiree – necrotic lesions on inoculated leaf Maris Bard – necrotic lesions on inoculated leaves Maris Bard – leaf drop on systemic leaves ## PVY^N symptoms (Mont) Desiree – symptomless infection Maris Bard – symptomless infection ## PVY^z symptoms (L26) Desiree – no symptoms Maris Bard – local and systemic necrosis ## PVYNTN symptoms (HR1) Desiree – systemic mosaic, no necrosis Maris Bard – local and systemic necrosis ### Genetic classification | | PVY ⁰ | PVYC | PVY ^z -NTN | PVYN | |---------------------------------|------------------|------|-----------------------|------| | Desiree
(nc:Ny:nz) | HR | S | S | S | | King Edward (<i>Nc:ny:nz</i>) | S | HR | S | S | | Maris Bard (<i>Nc:Ny:Nz</i>) | HR | HR | HR | S | | Tobacco | S | S | s/vn | vn | | | | | | | Kerlan et al. (2011) Phytopathology 101, 1052-1060. # Practical consequences of the HR response - Virus induces HR in an inoculated leaf - Under certain conditions, it may restrict virus movement and prevent systemic infection - Occasionally, despite the HR response, a systemic infection is established - In this case HR response becomes systemic - Infected plant may eventually die, and will not serve as a good host for the virus vector ### Additional PVY recombinants ## PVY recombinants: genetic classification | | PVYN | PVYE | PVYZ | |---------------------------------|------|---------|------| | | Mont | PVY-MON | L26 | | Desiree
(nc:Ny:nz) | S | S | S | | King Edward (<i>Nc:ny:nz</i>) | S | S | S | | Maris Bard (<i>Nc:Ny:Nz</i>) | S | S | HR | | Tobacco | VN | S | S | Kerlan *et al.* (2011) Phytopathology 101, 1052-1060. Galvino-Costa *et al.* (2012) Plant Pathol. 60, 388-398. ## Connecting the dots | | PVYO | PVYC | PVYZ | PVYN | PVYE | | |---------------------------------|------|------|------|------|--------|-----| | Desiree
(nc:Ny:nz) | HR | S | S | S | S | | | King Edward (<i>Nc:ny:nz</i>) | S | HR | S | S | S | | | Maris Bard (<i>Nc:Ny:Nz</i>) | HR | HR | HR | S | S | | | Tobacco | S | S | s/vn | vn | S | | | | | | | | | | | Recombination | nr | nr | NTN | nr | NTN/NE | -11 | ## Connecting the dots - With some PVY recombinants genetically typed, it may be possible: - To locate genetic determinants for interactions with HR genes (Ny and Nz) - To narrow down genome regions involved in PTNRD ### Suggested PVY strain classification | Genotype
or strain | Serotype | Synonyms | Ngene elicited in potato | Tobacco reaction | Molecular
structure | PTNRD reaction | |------------------------|----------|--|--------------------------|------------------|---|----------------| | PVYC | 0 | PVY ^{C1} , PVY ^{C2} | Nc | M, VCI | NR | No | | D \/ V U | 0 | PVY ⁰ -FL | Ny | M, VCI | NR | No | | | O/O5 | PVY ^{O5} , PVY ^O -RB | Ny | M, VCI | NR | No | | PVYN | N | PVY ^{EU-N} ,
PVY ^R , PVY ^{-TVN} | ? | VN | NR | No | | PVY ^E | N or AST | PVY ^{ZE} | ? | M, VCI, or VN | R, parents - PVY ^{NTN} and PVY-NE11 | Yes | | PVY ^z | N or AST | EU-PVY ^{NTN} , Eu-
PVY ^{NTN} ,
PVY ^{EU-NTN} , PVY ^{NN} | Nz (putative) | VN | R, parents - PVY ^O
and PVY ^N | Yes | | | N or O | PVYNTN, PVYNTN-NW | | M, VCI, or VN | | | | PVY ^{N:O} | 0 | PVY ^{N-Wilga} , PVY ^{N-W} , PVY ^{N-Wi-P} , | ? | VN | R, parents - PVY ^O
and PVY ^N | No | | PVYN-Wi | 0 | PVYN-Wilga, PVYN-W,
PVYN-Wi-P, PVYN:O | ? | VN | R, parents - PVY ^O
and PVY ^N | No | | PVYNA-N | N | NA-PVY ^N , PVY ^{NA-NTN} ,
NA-PVY ^{NTN} | ? | VN | NR | Yes | | PVY-NE11 | N | | ? | VN | R, parents - PVY ^N
and unknown | Yes | Karasev and Gray (2013) Ann. Rev. Phytopathol. 51, 571-586. #### Recombinants to be characterized - Not found in recombinants: - PVYO-O5 genomes - Parents still not identified/found: - PVY-NE11 genome ## Virology Laboratory at U of I #### Staff - Al Poplawsky - Olga Nikolaeva - Mohamad Chikh Ali - Jennifer Dahan - Brandon Thompson #### Undergraduate students - Alicia Hodnik - Melena Suliteanu - Dalton Vander Pol - Archana Shrestha - Jeff Chojnacky #### Graduate students - Xue Feng - Arturo Quinterro - Kelsie Evans - Jenny Rowley ### Collaborators - Stewart M. Gray Cornell University - Camille Kerlan INRA, Rennes, France - Celeste Brown University of Idaho - Antonia Figueira University of Lavras, Brazil - Xiaojun Hu SAIC, Inc. ## Funding - USDA-NIFA-NRI - USDA-NIFA-SCRI - USDA-ARS, National Potato Council - Idaho Potato Commission - Washington State Potato Commission - US Potato Board